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The Omega polynomial was defined by M. V. Diudea as n(e)

e uv
(x) x

=
Ω =∑ , where the number of edges co -distant with e is 

denoted by n(e). One can obtain the Sadhana polynomial by replacing xn(e) with x|E|-n(e) in Omega polynomial. Then the 
Sadhana index will be the first derivative of Sd(x) evaluated at x = 1. In the present study, compute the Omega and 
Sadhana polynomials of a new infinite class of fullerenes is computed for the first time. 
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1. Introduction  

 
Although graph theory is one of the younger branches 

of mathematics, it is fundamental to a number of applied 
fields, including operations research, computer science, 
and nanostructures. In this paper we discuss the basic 
concepts of graph theory from the point of view of 
nanostructures. 

Fullerenes are molecules in the form of cage-like 
polyhedra, consisting solely of carbon atoms. The 
discovery of C60 bucky-ball, which has a nanometer-scale 
hollow spherical structure in 1985 by Kroto and Smalley 
revealed a new form of existence of carbon element other 
than graphite, diamond and amorphous carbon [1, 2]. In 
many of mathematical papers fullerenes with pentagonal 
and hexagonal faces were studied but other structures of 
fullerenes are very important too. In this paper we consider 
a class of fullerenes n4 3

F
×

 with trigonal and hexagonal 

faces. Let G = (V, E) be a connected bipartite graph with 
the vertex set V = V(G) and the edge set E = E(G), without 
loops and multiple edges. Suppose p, h, n and m be the 
number of trigonal, hexagons, carbon atoms and bonds 
between them, in a given fullerene F. Since each atom lies 
in exactly 3 faces and each edge lies in 2 faces, the number 
of atoms is n = (3p+6h)/3, the number of edges is m = 
(3p+6h)/2 = 3/2n and the number of faces is f = p + h. By 
the Euler’s formula n − m + f = 2, one can deduce that 
(3p+6h)/3 – (3p+6h)/2 + p + h = 2, and therefore p = 4. 
This implies that such molecules, made entirely of n 
carbon atoms, have 4 trigonal and (n/2 − 2) hexagonal 
faces. 

The distance d(x, y) between x and y is defined as the 
length of a minimum path between x and y. Two edges e = 
ab and f = xy of G are called co -distant, “e co f”, if and 
only if d(a, x) = d(b, y) = k and d(a, y) = d(b, x) = k+1 or 
vice versa, for a non-negative integer k. It is easy to see 
that the relation “co” is reflexive and symmetric but it is 

not necessary to be transitive. The Omega polynomial has 
been defined by M. V. Diudea as follows [3-7]: 

 
n(e)

e(x) xΩ = ∑  

 
where, n(e) denotes the number of edges co –distant with 
the edge e. It is easy to see that the Omega polynomial 

(x)Ω counts equidistant edges in graph G.  
A topological index of a graph G is a numeric quantity 

related to G. The oldest topological index is the Wiener 
index which introduced by Harold Wiener [7]. The 
Sadhana index Sd(G) for counting qoc strips in G was 
defined by Khadikar et al.[8,9] as eSd(G) (|E(G)| n(e))= −∑ . 
Also, the Sadhana polynomial of a graph G as defined by 
Ashrafi et al. [10] as |E| n (e)

eSd(x) x −= ∑  By definition of 
Omega polynomial, one can obtain the Sadhana 
polynomial by replacing xn(e) with x|E|-n(e) in omega 
polynomial. Then the Sadhana index will be the first 
derivative of Sd(x) evaluated at x = 1. 

A method [11,12] has been described on how to 
construct a fullerene C3n from a fullerene Cn having the 
same or even a bigger symmetry group as Cn. This method 
is called the Leapfrog principle. If one starts with a Cn 
cluster with icosahedral symmetry, all the new clusters 
will be of the same symmetry, since this is the biggest 
symmetry group in 3-dimensional space. In the first step, 
an extra vertex has to be put into the centre of each face of 
Cn. Then, these new vertices have to be connected with all 
the vertices surrounding the corresponding face. Then, the 
dual polyhedron is again a fullerene having 3n vertices, 12 
pentagonal and (3n/2) – 10 hexagonal faces.  

Throughout this paper, our notation is standard and 
taken from the standard book of graph theory [13]. In   
Fig. 1, one can see that the fullerene graph C20 and its 
Leapfrog, namely C60. Also, in Figs. 2 the 3 dimentional 
Leapfrog graph of C24 and C30 are depicted. We denote the 
Leapfrog of graph G by Le(F). 
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Le(C20) = C60. 
 

Fig. 1. Fullerene graph C20 and its Leapfrog. 

 
 

L(C20) = C60. 
 

Fig. 2. Le(C24) and Le(C30). 
 

 
We encourage the reader to consult papers by Ashrafi 

et al. and Ghorbani et al. [14-28].  
 

 
2. Results and discussion 

 
In this section by using definition of Omega and 

Sadhana polynomials, we compute these counting 
polynomials for a special class of fullerenes, namely n4 3

F
×

. 

In other word, n4 3
F
×

 is an infinite family of fullerenes with 

4 3× n  carbon atoms and 12 3 +× n  bonds (the graph G, 
Figure 1 is n=1) constructed by Leapfrog principle. At first 
we should to compute some computational examples. 

Example 1. Suppose F12 denotes the fullerene graph 
on 12 vertices (Figure 3). The co – distant edges are shown 
by the same colours. Then Ω(x) = 6x3 and Sd(x) = 6x9.  

 

 
 

Fig. 3. The fullerene graph F12. 
 

Example 2. Consider the fullerene graph F36 with 36 
vertices, Fig. 4. Then one can see that Ω(x) = 6x6 + 6x3 and 
Sd(x) = 6x30 + 6x33.  

 
Fig. 4. The fullerene fraph F36. 

 
Example 3. The Omega and Sadhana polynomials of 

fullerene graph F108 (Figure 5) are as follows: 
Ω(x) = 6x9 + 6x18 and Sd(x) = 6x90 + 6x99. 

 

 
 

Fig. 5. The fullerene graph F108. 
 
Theorem. Consider the fullerene graph n4 3

F
×

, see 

Fig. 6. Then  
 

n 1 n 1
2 2

n n1
2 2

n 1
23 k 6 3

k 0

n 1
23 k 6 3

k 0

6x ( 6 3 )x 2 | n
(x) .

6x ( 6 3 )x 2 | n

+ −

+

−

×

=

−
×

=

⎧
⎪ + ×∑ /⎪
⎪Ω = ⎨
⎪
⎪ + ×∑⎪⎩

 

 
Proof. By Fig. 6, there are two distinct cases of qoc 

strips. We denote the corresponding edges by e1 and e2. By 
using Table 1 and Fig. 6 the proof is completed. 

 
Table 1. The number of co-distant edges of ei, i = 1, 2. 

 
No. Number of co-

distant edges 
Type of 
Edges 

n 1
2 k

k 0

n 1
2 k

k 0

6 3 2 | n
(x) .

6 3 2 | n

−

=

−

=

⎧
⎪ ×∑ /⎪⎪Ω = ⎨
⎪
⎪ ×∑⎪⎩

 

18 e1 

6 9 e2 
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Corollary 1. 
 

n 1 n 1
2 2

n n1
2 2

n 1
2|E| 3 k |E| 6 3

k 0

n 1
2|E| 3 k |E| 6 3

k 0

6x ( 6 3 )x 2 | n
Sd(x) .

6x ( 6 3 )x 2 | n

+ −

+

−

− − ×

=

−
− − ×

=

⎧
⎪ + ×∑ /⎪
⎪= ⎨
⎪
⎪ + ×∑⎪⎩

 

 

e1

e2

 
 

 
Fig. 6.The graph of fullerene n4 3

F
×

 for n = 3. 

 
 
References 

 
  [1] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl,  
        R. E. Smalley, Nature 318, 162 (1985). 
  [2] H. W. Kroto, J. E. Fichier, D. E Cox, The Fullerene,  
        Pergamon Press, New York, 1993.  
  [3] M. V. Diudea, S. Cigher, P. E. John, MATCH  
        Commun. Math. Comput. 60, 237 (2008). 
  [4] P. E. John, A. E. Vizitiu, S. Cigher, M. V. Diudea,  
        MATCH Commun. Math. Comput. Chem. 57, 479  
        (2007). 
  [5] M. V. Diudea, Carpath. J. Math. 22, 43 (2006). 
  [6] M. V. Diudea, S. Cigher, A. E. Vizitiu, O. Ursu, P. E.  
        John, Croat. Chem. Acta 79, 445 (2006). 
  [7] H. Wiener, J. Am. Chem. Soc. 69, 17 (1947). 
  [8] P. V. Khadikar, Nat. Acad. Sci. Letters 23, 113  
       (2000). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  [9] P. E. John, P. V. Khadikar, J. Singh, J. Math. Chem.  
        42, 37 (2007). 
[10] A. R. Ashrafi, M. Ghorbani, M. Jalali, Indian J.  
        Chem. 47A(4), 538 (2008). 
[11] P. W. Fowler, Chem. Phys. Lett. 131, 444, (1986). 
[12] P. W. Fowler, J. I. Steer, J. Chem. Soc. Chem.  
        Commun. 1987, 1403 (1987). 
[13] N. Trinajstic, Chemical Graph Theory, 2nd ed.; CRC  
        Press: Boca Raton, FL., 1992. 
[14] A. R. Ashrafi, M. Ghorbani, M. Jalali, J. Theor.  
        Comput. Chem. 7(2), 221 (2008). 
[15] A. R. Ashrafi, M. Jalali, M. Ghorbani, M. V. Diudea,  
        MATCH Commun. Math. Comput. Chem. 60(3), 905  
        (2008). 
[16] A. R. Ashrafi, H. Saati, M. Ghorbani, Digest Journal  
        of Nanomaterials and Biostructures 3(4), 227 (2008). 
[17] M. Ghorbani, M. Jalali, Digest Journal of  
        Nanomaterials and Biostructures 4(1), 177 (2009). 
[18] M. Ghorbani, M. Jalali, Digest Journal of  
        Nanomaterials and Biostructures 4(3), 403 (2009). 
[19] M. Ghorbani, M. Jalali, MATCH Commun. Math.  
        Comput. Chem. 62, 353 (2009). 
[20] A. R. Ashrafi M. Saheli, M. Ghorbani, Journal of  
        Computational and Applied Mathematics, DOI:      
        10.1016/j.cam.2010.03.001.  
[21] M. Ghorbani, M. Jalali, Digest Journal of  
        Nanomaterials and Biostructures 4(2), 423 (2009). 
[22] A. R. Ashrafi, M. Ghorbani, M. Jalali, Digest Journal  
         of Nanomaterials and Biostructures 3, 245 (2008).. 
[23] A. R. Ashrafi, M. Ghorbani, Optoelectron. Adv.  
        Mater. – Rapid Comm. 3(6), 596 (2009). 
[24] A. R. Ashrafi, M. Ghorbani, M. Jalali, Optoelectron.  
        Adv. Mater. – Rapid Comm. 3(8), 823 (2009). 
[25] M. Ghorbani, A. R. Ashrafi, M. Hemmasi,  
        Optoelectron. Adv. Mater. – Rapid Comm. 3(12),  
        1306 (2009). 
[26] A. R. Ashrafi and M. Ghorbani, Optoelectron. Adv.  
        Mater. – Rapid Comm. 3(3), 596 (2009). 
[27] M. Jalali, M. Ghorbani, Studia Universitatis Babes- 
        Bolyai, Chemia 2, 145 (2009). 
[28] M. A. Hosseinzadeh, M. Ghorbani, J. Optoelectron.  
        Adv. Mater. 11(11), 1671 (2009). 
_______________________ 
*Corresponding author: mghorbani@srttu.edu 


